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In contrast to the solution of Garabedian fl] and to the solution constructed by the Berg- 

man method [2]. we derive ‘an exact general solution for the pair of functions cp and $ 

(cp is the velocity potential, $ is the stream function) of a system of partial differential 
equations describing the axisymmetrical flow of an incompressible ideal fluid. Our solu- 

tion depends on an arbitrary analytic function of a complex variable and is bounded on 
the axis of symmetry. 

The solutions constructed in [r] and p] increase without limit as the axis of symmetry 
is approached. 

Three-dimensional steady-state axisymmetrical flows of an incompressible fluid are 
described by the system of Eqs. P] 
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Here the velocity potential cp and the stream function $ depend on only the two vari- 

ables x, E/ of the cylindrical coordinate system (g > 0 and X is parallel to the axis of 

symmetry). 
The integrals d system (1) will be sought in series form 

cp=fW+~ aa $. $=A+Bx+i i%(g) $: (‘1 
kd AI-0 

Here 19, Y are arbitrary barmonic functions which satisfy tbe Cauchy-Riemasn condi- 

tions aa, EW sot aur -- -E&j-? T- 3% a= 
(3) 

where S2, ak, 61~ (k = 0, 1, 2 , . ..) are the required functions of the single argument @. 
Let us construct the corresponding derivatives of (2). substitute them into (l), and 

recall Eqs. (3) and relations of the form 
a's+lap $TlY' ak+ly a"+'0 

ax&jic - -p-' zp ---gz (4) 
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which follow from (3). 

We then have ~ 

This system is satisfied if we impose conditions of the form 

a’o=O, plo=O, SLY=+ 

h-1 
ci I(-1 = - + (Ph.’ + P&l)’ ai + ax_1= - y(k=l, Z,...) 

From this we see that a, =a and @ o = fi can only be arbitrary constants, and that a, 
and B1, (k=l, 2 , . . . ) can be expressed as a combination of the preceding functions 
Ct,l, fi k-1. Ultimately, all of these functions can be expressed in terms of just a, p and 

g and tabulated once and for all bv means of Formulas 

‘Jo l/o 

Let us isolate the class of solutions, which in contrast to the classes of [l and 21 does 
not become infinite on the axis of symmetry ( y = 0). To this end we arbitrarily set B = 0, 
Do = 0 and @ = 0. In this case we find from (5) that fl = C = const . Without limiting 
generality we can set a, =a = 1 . 

Taking the lower limit &, = 0 in (6) we arrive at the recurrent relations 

ak = akyk, PI; = bhyk+’ (k=O, 1, 2,. .) 

k+i 1 
a’h.=kbk,bk=-kil - tak-l + b,_,) (ao = 1, bo = 0) 

(7) 

(8 

From (2). (7) and (8) we obtain Formulas 

II,= &d’+‘~ 
??=I 

(“1 

(k=O, 1, 2 ,...; rz=l,:! ,..., (-~)!!=---I) (10) 

Formulas (9) can be written in complex form as 

Here 10 (z) = Q, + iQ ‘is an arbitrary analytic function of the complex variable 
2 = z + iy. We have the familiar Cauchy formula 

(12) 

(y is an arbitrary closed contour within which the point 2 lies). 
We substitute (12) into (11) and, assuming that the series converge uniformly, inter- 

change the summation and integration symbols (the domain of convergence will be indi- 
cated below). 
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Taking account of (10) we obtain 

We note that the coefficients 

(k+‘/a)(k+i) 
‘Jr+1 = (k + 1) (k + 1) ‘,* 

D 
(n + ‘/a) (n + 1) 

n+1= ‘(I& + 1J (n + 2) Dn 

vary as in the hypergeometric series. Tlnis enables us to write Formulas (13) as 

,=-fw/&~~F (% 1, 1, s)dt 
Y 
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c ) 

dr, (14) 
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From (14) we can readily see that the series appearing in ( 11) converge in the domain 

Or, setting p = 

(E 

Condition (15) 
y = 0 (this is the 

(14) are bounded 

12-d * 
I .I s <a<1 

we have p > 21/ (y>O),i.e. 

-z)~+(~)-Y)~>~Y~ (z=z+iy, 6=5+W (15) 

is always satisfied on the line E/ = 0 . From (14) we find that $ = 0 for 

zero streamline). Integrals (9) or (which is the same thing) (11) and 
on the axis of symmetry. This makes them markedly different from 

the known solutions of Garabedian P_] and of @]. 
We have therefore proved the following theorem: by way of linear operators (11) or 

(14) the complex potential w(Z) defines some axisymmettical flow of an ideal incom- 
pressible fluid. 

Specifying an arbitrary analytic function ~(3) in (ll), we can obtain various parti- 
cular solutions and thus assemble a collection of elementary axisymmetrical flows of an 

incompressible fluid. 
By virtue of the linearity of system (1). any linear combination of particular solutions 

is also a solution. This approach is analogous to the well-known inverse method of the 
theory of plane incompressible fluid flow. On the other hana, in solving direct boundary 

value problems the function w(z) must be found by some method. The latter problem 

is incomparably more difficult than the former. 
Let us cite several examples based on the choice of the function W(Z). 

1. Let us set W(Z) = UZ (where u is a real constant). We then find from (lo), (11) 

that cp = ux, $ = - ‘lsUya 

These are the familiar formulas characterizing a homogeneous axisymmetrical stream 
moving with the velocity u parallel to the axis of symmetry [3]. 

2. Let us set w = Q/Z (a plane dipole). Then 
k! 

wfk’(z) = Q k-1)” ,k+l 
(16) 

For function (16) Formulas (10) and (11) yield 
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Here 

(17) 

Takine account of (18). we can rewrite Formulas (17) as 

cp = - Q Rc f F (‘/p. I, 1, 51, (I!,) 

The following Eqs. are known f4I: 
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In this case 5 = sin2 f, cz = i.Then 

After simplification Formulas (19) to (21) become (8 =Q /4’ll) 
9 1 

(fJ --GI/zzS-y” * = & ( vx:+ y2 - i ) (22) 

Formulas (22) characterize a three-dimensional source of strength Q situated at the 

origin of the cylindrical coordinate system 13-j. 
Linear operators (ll), (14) with the complex potential w = UZ +p/4llZ describe flow 

past a Fuhrmann half-body (a semi-infinite solid of revolution) 133. 

3. IfW=Z2, then (10) and (11) readily yield Formulas 
t/” 

rF--c---p 
qlJ)=-xy- 

(‘w 

In the plane case the function w = Z2 characterizes flow in the coordinate angles 
along equilateral hyperbolas with the velocity v = 2 V/Z~ + ,~a. at the point Z ; as we 
see from (23), in the axisymmetrical case this function likewise yields flow past an angle 

in the meridional section x, y, although the streamlines in this case take the form of 
nonequilateral hyprebolas, and the velocity of the point z is v = v4xs + Y’. 

These examples show that there is no direct connection between axisymmetrical and 
plane flow of incompressible fluids : the same complex potential is generally associated 

with dissimilar flows. 
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